Errors Estimation for Evaluating Mixed-Mode Stress Intensity Factors for Cracks Emanating from Sharp Notches Using Simulated Photoelasticity

نویسندگان

  • M. H. Ghasemi
  • M. Khaleghian
  • N. Soltani
چکیده

In this paper, errors involved in extracting stress intensity factors from photoelastic fringe pattern, which were simulated for crack estimated. The estimated errors do not contain the errors associated with the optical apparatus, but only consist of the errors associated with discretization and extraction of data for SIF’s calculation to accomplish that. A series of fringe pattern were simulated for specimens containing various cracks in finite strips under remote tensile loading. In addition, by combination of fracture mechanics and photoelasticity’s equations and digital image analysis an algorithm is developed for determining stress intensity factors (SIFs). In addition, to utilize the advantage of "whole-field" photoelasticity and to minimize the random experimental errors, the over deterministic least-squares method of Sanford combined with Newton-Raphson method is used to obtain SIFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

Photoelastic Determination of Mixed Mode Stress Intensity Factors

A two dimensional finite model with inclined crack at different crack angles are being analyzed in mixed mode condition using photo elasticity method for the determination of Stress Intensity Factors. The well-known Sih’s equation and three points deterministic approach is used for the determination of stress intensity factors. The effects of biaxial load factor, crack angle, size factors were ...

متن کامل

The mixed mode fracture mechanics in a hole plate bonded with two dissimilar plane

In the present research, the mixed-mode fracture mechanics analysis in a plate with central hole under tensile loading is considered. It is assumed that a plate containing two symmetrical hole-edge cracks is bonded with two dissimilar planes. The stress intensity factors at the crack tips are calculated. The problem is modeled in Casca software and this model is analyzed with Franc software. Th...

متن کامل

Analysis of Multiple Yoffe-type Moving Cracks in an Orthotropic Half-Plane under Mixed Mode Loading Condition

The present paper deals with the mixed mode fracture analysis of a weakened orthotropic half-plane with multiple cracks propagation. The orthotropic half-plane contains Volterra type glide and climb edge dislocations. It is assumed that the medium is under in-plane loading conditions. The distributed dislocation technique is used to obtain integral equations for the dynamic problem of multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013